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Abstract AbstractAbstractAbstract 

 
A review of the statistical and practical considerations in formulating ways 
of specifying decision levels and detection capabilities for radioanalytical 
analyses is very timely.  In June, a working group was re-constituted by the 
Health Physics Society to review the need for revisions of the national 
standard, ANSI N13.30, APerformance Criteria for Radiobioassay (Health 
Physics Society 1996).  Since I participated from the beginning, about 
twenty years ago, in the deliberations resulting in the standard, I will review 
some of the rationale leading to specification of ways of formulating 
decision levels (DL) and minimum detectable amounts (MDA) in the 
standard.  Then, I will review some of the literature and experience gained 
since the standard was published.  More recent experience suggests a 
need for some possible revisions to specifications in the standard, or at 
least some further clarification of the specific purposes and usage of DL 
and MDA specifications in the context of the standard=s objectives. 
 
                                                           
*  For presentation in the MDA Workshop at the 47th Annual Conference on Bioassay, Analytical and 

Environmental Radiochemistry, Honolulu, Hawaii, November 3-8, 2001.  The views expressed in this 
paper are those of the authors alone. 



INTRODUCTION INTRODUCTIONINTRODUCTIONINTRODUCTION 
 
The principle of open hostility among friends 
 
Before reviewing the history and rationale of DL/MDA formulations, it is urgent 
that I first review the early-established traditions of open and honest informal 
discussion at these BAER conferences, which I will call, AThe principle of open 
hostility among friends.@  The first BAER meeting in 1954, which was then 
called the Abioassay meeting,@ was formed from a relatively small group of about 
fifteen analytical chemists, most of whom worked in or headed the analytical 
chemistry groups of the major Atomic Energy Commission plants or laboratories. 
 I was first sent by Dr. G. Victor Beard to one of these meetings in 1957 as a 
young AEC health physicist, to encourage the group to provide a report, not as a 
standard, but as a guide to procedures that were deemed adequate as state-of-
the art for determining urinary excretion of tritium, strontium-90, uranium, radium, 
and plutonium.  A compendium, AECU-3066 was published in 1958 (John B. 
Hursh, Professor, University of Rochester, editor).  
 
To me, these chemists were scientific and professional giants, and they treated 
me kindly as if I were a junior member of their family.  However, I was impressed 
with how they could argue vociferously with each other over chemical procedures 
and still enjoy such camaraderie and close friendships at the same time.  Some 
of the leading discussants of this early era were Claude Sill of the Idaho AEC 
laboratory, Jacob (Jake) Sedlet of Argonne, John Harley of the AEC Health and 
Safety Laboratory, and Moe Milligan of Los Alamos.  These chemists were also 
interested in the dosimetric applications of their work. 
 
Over time, as I began to make presentations, I sometimes came under attack 
also.  The most vocal attack was when Claude Sill chastised me at a bioassay 
meeting for leaving out the constant 2.71 in the Currie (1968) formulation of 
detection limit, pointing out it was much needed in low background counting to 
avoid stating inappropriately an MDA close to zero. (Claude was very astute 
regarding the statistical aspects of his analyses, as well as one of the most 
interesting presenters of his analytical procedures I have ever heard.)  This 
comment forced me back to the Adrawing board@, and one night, with Roscoe Hall 
checking me, I re-derived Currie=s equation to understand the origin of 2.71.  We 
decided it was an artifact of mixed assumptions, and might as well be set to 3, 
which at least would in the limit of zero background give the selected exp(-3) = 
0.05 probability of a Type II error (Brodsky 1986).  Currie agreed to this.  
Claude=s attack (and he is still my good friend), was a good example of the value 
of the informal atmosphere of the bioassay conferences, and the principle of 
Aopen hostility among friends.@  It forced me back to further study, and I learned 
much more about my problem.  I could give many other examples in the context 
of our development of the ANSI N13.30 standard, both in committee and in front 
of the bioassay meeting attendees.   
 



We need to continue this free-speaking tradition.  Unfortunately, Dan Strom, Jay 
MacLellan, Guthrie Miller and I arrived at a temporary cease-fire just before this 
meeting, and we laid down our arms.  However, I am confident that before this 
meeting is ended, we will find darts to throw again.  Please, all you newcomers, 
feel free to join in the fray and stimulate deep thought and self examination.  
Skepticism is an important ingredient in our scientific method.  Ken Inn and Dave 
McCurdy, as young as they are, have been here long enough to know what I 
mean. 
 
Past rationale for formulations of DL and MDA in ANSI N13.30 
 
Of course, I knew that I would not remember today all of the statistical 
considerations of the working group that developed ANSI N13.30, so I wrote 
them down for some of the appendices of the standard to help later groups 
review considerations that might still be applicable.  The working group insisted 
on two revisions to reduce the number of appendix pages that ultimately were 
included in the standard.  However, my boss Bob Alexander suggested that I 
publish the entire review, which included literature reviews and rationale on 
accuracy requirements of bioassay analyses for different health physics, legal, 
and epidemiologic purposes as well as the statistical rationale for the DL, MDA, 
bias and precision provisions.  I obeyed my boss, and after considerable review 
by peers, published the discussion as a NUREG (Brodsky 1986), with a Preface 
giving credit to the many individuals who helped develop the statistical concepts 
and rationale.  I really had not intended to put out this report under my own 
name, since I knew that this would make me the target of many dart throwers.    
I refer any newcomers to this report, since it is impossible in this brief abstract to 
do justice to the 32 pages of the report describing the literature review and 
rationale for some of the DL and MDA provisions of the standard.  Six opening 
paragraphs presenting the advantages of using standard DL and MDA definitions 
may be summarized as dealing with: 1) preventing false claims of low detection 
capability not achieved with a high degree of assurance; 2) avoiding 
understatements with respect to other laboratories that might result in loss of 
information or business; 3) requirements for a priori adequate determination of 
precisions and biases to avoid misstatements of confidence and improper 
recording of results; 4) assurance of prior determination of  all calibration and 
other experimental factors necessary to define DL and MDA so that records will 
stand  up to professional or  court scrutiny; 5) allowing  selection of appropriate 
Aacceptable minimum  detectable amounts@ (AMDA) (which were removed from 
the draft standard before final promulgation); 6) the formation of an industry-wide 
consensus on these issues to avoid chaos in planning  and advertising 
capabilities, and in the selection of appropriate service laboratories or procedures 
for specific analyses.   
 
The NUREG report, and much of the appendix material in the standard, also 
indicated the assumptions and limitations of the DL and MDA formulations under 
low-background radiometric conditions, and included formulations for different 



sample and background counting times.  Also, recommendations of Currie (1984) 
were also summarized and adapted for use in including non-Poisson errors and 
biases in formulations of DL and MDA.  Yet, while the use of other formulations 
was provided for under special circumstances, the use of the simple formulations 
for paired sample and blank adapted from Currie (1968), with his limit of 
detection converted to activity units, was retained in the standard for general use: 
  
 

DL = 2.33 sb ;          MDA =  (4.65 sb +3)/KT, 
 
where sb is the standard deviation (or standard error if multiple blanks 
measurements are used in a given interpretation) of the blank total count 
(including non-Poisson random errors), K is a calibration factor to convert, e.g., 
counts/minute to activity units, and T is the counting time (assumed the same for 
the blank and the sample). 
 
The NUREG report covers most of the rationale for statistical aspects of ANSI 
N13.30 only up to the publication of the draft version of the standard (Health 
Physics Society 1987).  Rationales for revisions of the standard are included in 
appendices to the final standard (Health Physics Society 1996).  From the first 
draft of the standard, an experimental testing program for the efficacy of the 
standard was carried out under contracts from the NRC and DOE (Robinson et 
al. 1984; Robinson et al. 1986; Reece et al. 1986).  These round robins 
determined whether the major laboratories could meet the MDA provisions and 
the accuracy provisions of the draft standard.  As a result of these tests and other 
considerations, the requirement for meeting an AMDA for specific nuclides was 
removed from the standard.  My main original assignment from Bob Alexander 
was to try to ensure that at least a part of the standard provided the 
specifications needed to establish a laboratory accreditation program.  Ken Heid, 
the first Chairman, initially objected to this requirement but later agreed to the 
consensus.  Although the NRC later dropped its interest in an accreditation 
program, the DOE program now under Stan Morton is providing experience with 
the final standard that can provide guidance on necessary revisions.  Ken Heid 
resigned the chair after the draft standard was published, Roscoe Hall was chair 
during early revisions, and Matt Lardy steered the standard through many 
revisions to publication in 1996.  All of these chairpersons were indefatigable and 
excellent chairpersons.  Matt has now taken the helm again.  He=s not one who 
practices open hostility, but watch out; he=s tough as nails. 
 
SUGGESTIONS FOR REVISITING THE DL AND MDA FORMULATIONS 
SUGGESTIONS FOR REVISITING THE DL AND MDA 
FORMULATIONSSUGGESTIONS FOR REVISITING THE DL AND MDA 
FORMULATIONSSUGGESTIONS FOR REVISITING THE DL AND MDA 
FORMULATIONS 

 
The many suggestions for revising the DL and MDA formulations in ANSI N13.30 



cannot be presented in any detail in this abstract.  Reference to papers 
presented on this subject (MacLellan 2000; Miller et al. 2000; Potter 1999, 2001; 
Strom and MacLellan 1999, 2001; Tries 1997) can provide a platform for further 
discussion and understanding of the issue.  I am optimistic that a new consensus 
on the statistical aspects of the standard can be reached within the ANSI working 
group, with the assistance of presentations and discussions at these BAER 
meetings. 
 
However, some cautionary notes should be inserted at this point.  We need to be 
clear that we are all talking at the same time about the same parameters and 
assumptions, and need to fairly interpret each other=s work.  Decisions must be 
made with good science.  Strom and MacLellan (1999, 2001) have provided an 
excellent review of many of the methods proposed in the literature for defining 
decision levels, in addition to those reviewed elsewhere (Currie 1968, 1984; 
Brodsky 1986, 1992).  They have also proposed some modifications in defining 
decision level that are worthy of consideration.  Yet, their use of the word Awrong@ 
is strong; they have not credited the ANSI working group with their published 
recognition of the approximations involved in recommending the simple DL and 
MDA formulas given above.  Readers of their paper could get the impression that 
the ANSI working group was totally incompetent in arriving at the entire standard. 
 Thus, they may be the targets for a few further darts (Brodsky 1993).  Further, 
their results showing that the Type I error they calculate, alpha-prime, is so 
deviated from the 0.05 level when they calculate DL for 0.05, is based on the 
assumption that a single measurement of the blank is used as the best estimate 
of the true mean in calculating DL.  They have not referenced my paper (Brodsky 
1992), where I calculated exact distributions of the differences in Poisson 
variates to show, assuming that preliminary laboratory quality assurance 
procedures required knowledge of blank counts and their stability, that for 
practical purposes the simple DL and MDA formulations are not so bad over 
most of the low background range.  Potter (1999, 2001) has shown my 
calculation to be correct, using a theorem involving modified Bessel functions to 
check my algorithms, and also to propose other ways of determining DL and 
reducing the chance of false positives.  For purely Poisson fluctuations, there can 
not be formulations that give exact alpha or beta probabilities at very low counts; 
extra-Poisson variance introduced by fluctuations in calibration factors, yields, or 
other continuous variables, is necessary to remove the discrete nature of net 
Poisson counts (Currie 1984; Brodsky 1992; Tries 1997). 
 
Miller et al. (2000) have used the work Aweak@ to describe the ANSI DL, 
suggesting instead definitions based on Bayesian formalisms.  However, for a 
well-defined prior blank distribution, which is desirable (when attainable) before a 
laboratory procedure is placed in use for analyzing human samples, it is not 
appropriate to assume a prior, as it might be in evaluating actual human 
exposures a posteriori (Brodsky 2001a).  Also, as pointed out by Martz (2000, 
page 66), one of the disadvantages of the Bayesian approach for our purpose is 
that a practitioner may choose a prior distribution (rather than use a confirmed 



one) that is AYinappropriate (at best) or self-serving (at worst).@  This kind of 
unfair choice to make exaggerated claims of detection capability is what we want 
to avoid in revising the ANSI N13.30 standard.   
 
Other ways of reducing in practice the chance of reporting excessive false 
positives in routine bioassay analyses would seem more appropriate (MacLellan 
2000, Strom and MacLellan 2001).  For example, Strom and MacLellan (2001) 
have suggested adding a constant to some formulations.  MacLellan (2000) has 
suggested using twice the total propagated error.  Another way could be to define 
the DL as 0.5 MDA, since the limit of MDA at zero counts is 3/KT; this would be 
consistent with the DL/MDA relationship at high counts, as shown by Currie 
(1968).  I would be happy and remain friends with anyone who might suggest 
formulations that would not increase the chance of false claims of detection 
capability.  We adopted in the previous ANSI working group a detection level of 
more than 4.65 times the standard deviation of a blank by using Currie=s 
approach, when some laboratories were still using two or three times the 
standard deviation to define detection limits; it is professionally hazardous to 
make claims on such bases. 
 
AN EXAMPLE OF DEFINING DL AND MDA IN PRACTICE 

 
Just one example is presented of the importance of deciding what 
population comparison is appropriate for defining DL and MDA. Consider 
the distribution in Figure 1 of plutonium in a single day=s urine among 
persons exposed only to global fallout (Brodsky 2000; Barss et al. 2001).  
The 95 percentile of 85 aCi could be used as a DL for another individual=s 
sample to (tentatively) be considered above the population distribution.  
Figure 2 shows the uncertainty distribution in determining single sample 
amounts, as derived for a fission track analysis (FTA) procedure in which it 
was found that errors were not normally distributed; rather, the ratio of an 
interpretation divided by the proper regression estimate was found to be 
lognormal (Klemm et al. 2001; Brodsky et al. 2001b).  Examination of Figure 
2 shows that an MDA in urine, by the latter FTA procedure, would need to 
be about 300 aCi median before it could be assured that 95% of the 
interpretations would be above 85 aCi.  Thus, when using here one of the 
lowest detection methods for plutonium, we completely avoid the problem 
of erroneous alpha levels; and we can avoid excess false positives 
(excessive administratively and in regard to risk) by lowering the selected 
alpha level further as desired. 
 
Food for thought.  Let us deliberate among friends. And let us celebrate 
with our great friends and colleagues 50 years of such deliberation since 
Jack Schubert (who established the first bioassay program at Argonne and 
turned it over to the great Jake Sedlet) introduced the subject of 
radiobioassay with his three seminal review papers (Schubert 1951). 
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Figure 1 B U. S. Population Urinary Excretion of Pu (Brodsky 2000; Barss et al. 2001). 

Figure 1 B U. S. Population Urinary Excretion of Pu (Brodsky 2000; Barss et al. 
2001).Figure 1 B U. S. Population Urinary Excretion of Pu (Brodsky 2000; Barss et al. 
2001).Figure 1 B U. S. Population Urinary Excretion of Pu (Brodsky 2000; Barss et al. 

2001). 
 



 
 

Figure 2 B Interpretation Distributions at Several True Levels (Klemm et al. 2001; Brodsky et al. 
2001). 
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Abstract 
Utilizing a known relationship between the probability distribution for the net count in paired 
counting and modified Bessel functions of integral order it is possible to compute exact critical 
levels and detection limits together with the associated errors of the first and second kinds.  An 
alternative equation for the critical levels for paired counting, when the error of the first kind is 
0.05, has been developed.  This equation is as follows:    

Lca  = floor(1.414*1.645*sqrt(B) + 0.457). 
In the above equation the floor function yields the largest integer not greater than it’s argument 
and B is the background count.  The results are outstanding as will be demonstrated in this 
article.   

INTRODUCTION 
If x and y are Poisson distributed random variables with expectations a and b, 
respectively, then the probability of observing k net counts can be expressed as 
follows (Kellam 1946): 

                                P(x-y = k) = exp(-a-b) (sqrt(a/b))k Ik(2sqrt(ab)).    
In the above equation Ik is the modified Bessel function of the real variable 
(2sqrt(ab)) and of integral order k.  The function Ik is defined by a power series 
(Abramowitz and Stegun 1972) andkdenotes the absolute value of k.  A proof of 
the above equation, from the work of Kellam (1946), is presented in the Appendix. 
 If the background count is not greater than 100 and the errors of the first and 
second kinds are not less than 0.001, then for the purpose of calculating exact 
critical levels and detection limits, Ik can be adequately computed using 250 
terms in the power series.  This fact can be exhibited by looking at the residuals 
in the well-known recursion relation for the modified Bessel functions of integral 
order (Abramowitz and Stegun 1972).  A function written in C++ to compute Ik is 
given by Potter (1999).   
 

CRITICAL LEVELS AND DETECTION LIMITS 
If the net count is greater than the critical level it is concluded that activity was 
detected.  The probability of concluding there is activity when there is no activity 
is called the error of the first kind.  For discrete random variables, it is usually not 
possible to determine critical levels yielding errors of the first kind equal to a 
specified value.  Brodsky (1992) and Currie (1984) choose the actual error of the 
first kind to be equal to or less than a specified error of the first kind.  This article 
follows that approach.  (It is possible to use random numbers and make the 
average error of the first kind, for a specified background count, equal to a 
specified error of the first kind.)  The error of the second kind is the probability of 
concluding there is no activity on a sample when there is activity present. 
Because the expected value for the gross count is not restricted to integral 
values, it is possible to have the error of the second kind equal to a 



predetermined value.  For the computations of this article, the detection limit is 
that value, with two decimal places, that yields an error of the second kind 
closest in absolute value to the specified error of the second kind.  In a 
straightforward manner exact critical levels and detection limits can be 
determined for paired counting.  An article by Potter (2000) further discusses 
exact results for paired counting. 

 
BRODSKY FORMULATION 

The Brodsky formulation (Brodsky 1992) calculates critical levels and the detection limits from 
the equations below: 
  Lcb = floor(1.414*1.645sqrt(B)),     Ldb = 3.0 + 4.65sqrt(B). 
The quantity B is the background count and the floor function yields the largest integer not 
greater than it’s argument.  In this article Lc and Ld are the exact critical levels and detection 
limits, respectively; Err1 and Err2 are the values for the errors of the first and second kind 
associated with the exact values, respectively.  Furthermore, Err1b and Err2b are the errors of the 
first and second kind associated with the Brodsky formulation, respectively.  Table 1 compares 
the Brodsky formulation with the exact computation. It is noted that Lcb lags Lc causing errors 
of the first kind greater than 0.05. It is also noted, for identical values of B, Table 1 of Brodsky 
(1992) agrees with Table 1 of this article. 
 
Table 1. Critical levels and detection limits for paired counting.  The units of B, Lc, Lcb, Ld, 
and Ldb are counts.  Err1, Err1b, Err2, and Err2b are probabilities. 
 
    B  Lc             Err1   Lcb            Err1b            Ld              Err2          Ldb             Err2b 
 
    0   0         0    0          0        3       0.05    2.996       0.05 
  0.1   1  0.004248    0    0.08653     4.88    0.04991     4.47    0.01539 
 0.15   1  0.008832    0     0.1212     4.94    0.05008    4.801    0.01292 
  0.2   1   0.01454    1    0.01454     5.01    0.04981     5.08    0.04725 
  0.4   1   0.04343    1    0.04343     5.24    0.05009    5.941     0.0303 
  0.5   2  0.009271    1    0.05921      6.8    0.05001    6.288      0.026 
  0.6   2   0.01383    1    0.07485     6.89    0.05005    6.602    0.02288 
  0.7   2   0.01905    1    0.08996     6.98    0.05002     6.89    0.02052 
  0.8   2   0.02478    2    0.02478     7.07    0.04992    7.159     0.0473 
    1   2   0.03724    2    0.03724     7.23    0.05011     7.65    0.03914 
  1.3   3   0.01608    2     0.0569      8.8    0.04992    8.302    0.03117 
  1.5   3   0.02211    2    0.06989     8.93    0.05011    8.695    0.02749 
  1.6   3   0.02532    2    0.07623        9    0.05002    8.882    0.02597 
  1.7   3   0.02864    3    0.02864     9.07    0.04991    9.063    0.05009 
    2   3     0.039    3      0.039     9.26    0.04994    9.576    0.04269 
  2.2   3   0.04607    3    0.04607     9.38    0.05001    9.897    0.03883 
  2.3   3   0.04962    3    0.04962     9.44    0.05002    10.05    0.03715 
  2.4   4   0.02031    3    0.05317    10.76    0.05006     10.2    0.03561 
  2.5   4   0.02228    3    0.05669    10.82    0.04996    10.35    0.03419 
  2.7   4   0.02634    3    0.06368    10.93    0.04994    10.64    0.03165 
  2.9   4   0.03053    3    0.07054    11.03     0.0501    10.92    0.02947 
    3   4   0.03267    4    0.03267    11.09    0.04993    11.05    0.05073 
  3.5   4   0.04358    4    0.04358    11.34    0.05005     11.7    0.04292 
  3.7   4   0.04798    4    0.04798    11.44    0.05002    11.94     0.0404 
  3.8   5   0.02308    4    0.05017    12.71       0.05    12.06    0.03925 
    4   5   0.02586    4    0.05455     12.8    0.05005     12.3    0.03711 
  4.2   5    0.0287    4    0.05889    12.89    0.05008    12.53    0.03519 
  4.4   5   0.03159    4    0.06319    12.98    0.05008    12.75    0.03345 



  4.7   5   0.03599    5    0.03599    13.12    0.04993    13.08    0.05069 
    5   5   0.04044    5    0.04044    13.25    0.04992     13.4    0.04718   
   
 

ALTERNATIVE FORMULA FOR CRITICAL LEVELS 
The alternative formulation of this paper calculates critical levels and detection limits from the 
following two equations:  
  Lca = floor(1.414*1.645sqrt(B) + 0.457),     Lda = 3.0 + 4.65sqrt(B). 
Furthermore, Err1a and Err2a are the errors of first and second kind associated with the 
alternative formulation, respectively.  Table 2 compares the alternative formulation with the 
exact computation.  From the tables values for Err2a are closer to 0.05 than are the values for 
Err2b.  The only instance, In Table 2, for Lca to differ from Lc occurs when B = 3.8.  Further 
investigations support the quality of the alternative approximation. 
 
 
 
 
 
Table 2. Critical levels and detection limits for paired counting.  The units of B, Lc, Lca, Ld, and 
Lda are counts.  Err1, Err1b, Err2, and Err2b are probabilities. 
 
    B  Lc             Err1   Lca            Err1a            Ld              Err2           Lda            Err2a   
 
    0   0         0    0          0        3       0.05    2.996       0.05 
  0.1   1  0.004248    1   0.004248     4.88    0.04991     4.47    0.06876 
 0.15   1  0.008832    1   0.008832     4.94    0.05008    4.801    0.05574 
  0.2   1   0.01454    1    0.01454     5.01    0.04981     5.08    0.04725 
  0.4   1   0.04343    1    0.04343     5.24    0.05009    5.941     0.0303 
  0.5   2  0.009271    2   0.009271      6.8    0.05001    6.288     0.0691 
  0.6   2   0.01383    2    0.01383     6.89    0.05005    6.602    0.05988 
  0.7   2   0.01905    2    0.01905     6.98    0.05002     6.89    0.05284 
  0.8   2   0.02478    2    0.02478     7.07    0.04992    7.159     0.0473 
    1   2   0.03724    2    0.03724     7.23    0.05011     7.65    0.03914 
  1.3   3   0.01608    3    0.01608      8.8    0.04992    8.302    0.06489 
  1.5   3   0.02211    3    0.02211     8.93    0.05011    8.695    0.05658 
  1.6   3   0.02532    3    0.02532        9    0.05002    8.882    0.05315 
  1.7   3   0.02864    3    0.02864     9.07    0.04991    9.063    0.05009 
    2   3     0.039    3      0.039     9.26    0.04994    9.576    0.04269 
  2.2   3   0.04607    3    0.04607     9.38    0.05001    9.897    0.03883 
  2.3   3   0.04962    3    0.04962     9.44    0.05002    10.05    0.03715 
  2.4   4   0.02031    4    0.02031    10.76    0.05006     10.2    0.06443 
  2.5   4   0.02228    4    0.02228    10.82    0.04996    10.35    0.06169 
  2.7   4   0.02634    4    0.02634    10.93    0.04994    10.64    0.05682 
  2.9   4   0.03053    4    0.03053    11.03     0.0501    10.92    0.05262 
    3   4   0.03267    4    0.03267    11.09    0.04993    11.05    0.05073 
  3.5   4   0.04358    4    0.04358    11.34    0.05005     11.7    0.04292 
  3.7   4   0.04798    4    0.04798    11.44    0.05002    11.94     0.0404 
  3.8   5   0.02308    4    0.05017    12.71       0.05    12.06    0.03925 
    4   5   0.02586    5    0.02586     12.8    0.05005     12.3    0.06104 
  4.2   5    0.0287    5     0.0287    12.89    0.05008    12.53    0.05771 
  4.4   5   0.03159    5    0.03159    12.98    0.05008    12.75     0.0547 
  4.7   5   0.03599    5    0.03599    13.12    0.04993    13.08    0.05069 
    5   5   0.04044    5    0.04044    13.25    0.04992     13.4    0.04718  
  



 
Why does this alternative formulation yield improved results?  The alternative formulation is a 
semi-empirical formulation that attempts to account for the discrete nature of the fundamental 
probability distribution by utilizing half-integer corrections (Meyer 1975).   (Based on half-
integer corrections, Lca equals floor(1.414*1.645sqrt(B) + 0.50).)  Then a slight perturbation to 
that approximation, using numerical experimentation, improves the closeness of the match of 
Lca to Lc.  The equation for Lca can be shown to give fine results when B is incremented in 
increments of 0.01. 
 
Using a similar approach, with a factor different than 0.457, good results are obtained when the 
errors of the first and second kind are 0.01.     
 

CONCLUSION 
An equation has been derived that expresses the probability distribution for the net count, for 
paired counting, in terms of modified Bessel functions of integral order.  From this equation it is 
obvious that the probability distribution for the net count is symmetric.  Results from a code that 
has the capability to compute exact critical levels and detection limits have been presented.  
Furthermore the exact results have been compared to the Brodsky formulation.  If one looks at 
average values for the errors of the first and second kind over a range of background counts, then 
the Brodsky formulation does a good job. 
 
The alternative formula has been shown to do a fine job of matching the exact results for 
increments of size 0.1 for B.  It is asserted that the results for increments of size 0.01 for B are 
equally fine. 
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APPENDIX 

Below is a brief proof of the relationship between the probability distribution for the net count in 
paired counting and the modified Bessel functions of integral order.  Take x and y to be Poisson 
distributed random variables with expectations a and b, respectively.  The coefficient of tr in the 
expansion of G1(t) = exp(a(t-1)) is the probability of r counts for a Poisson distributed random 
variable with expected value a.  Similarly, the coefficient of t-r in the expansion of G2(t) = 
exp(b(1/t –1)) is the probability of r counts for a Poisson distributed random variable with 
expected value b.  It then follows that the coefficient of tr in G(t) is the probability that the net 
count is exactly r counts where G(t) = G1(t)G2(t).  Making the substitutions a = zϕ/2 and b 
=z/2ϕ, G(t) can then then can be written as 
 

G(t) = exp{-z/2(ϕ + 1/ϕ) + z/2(ϕt + 1/ϕt)}. 
 

 The following equation is known to be true (Abramowitz and Stegun 1972): 
                                                                       ∞ 

exp(z/2(t + 1/t))  = Σ tnIn(z). 
                         -∞         
In the above equation In(z) is the modified Bessel function of integral order n with argument z  
Consequently G(t)  becomes 

         ∞ 
    exp{-z/2(ϕ + 1/ϕ)}Σ ϕrtrIr(z). 
                       -∞ 
It is concluded that the coefficient of tr is  
 
  exp{-z/2(ϕ + 1/ϕ)}ϕrIr(z) = exp(-a-b)(sqrt(a/b))rIr(2sqrt(ab)). 
 
In the last equation the identity Ir  = I-r was utilized (Abramowitz and Stegun 1972). 
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